xml地图|网站地图|网站标签 [设为首页] [加入收藏]

信息科技

当前位置:澳门金莎娱乐网站-官方首页 > 信息科技 > 光导纤维通讯传输损害物理机制商量及高速光传

光导纤维通讯传输损害物理机制商量及高速光传

来源:http://www.qd-haiyu.com 作者:澳门金莎娱乐网站-官方首页 时间:2019-11-25 16:02

日前,2017年度中国通信学会科学技术奖评选结果公布。北京大学为第一完成单位,信息科学技术学院现代通信所张帆教授、杨川川副教授等人完成的项目“光纤通信传输损伤物理机制研究及高速光传输系统实现”获自然科学类二等奖。

光网络迎来超100G曙光

主讲人简介

光纤通信网络是国家的重要基础设施。各类物理损伤是制约光传输系统性能的主要因素。阐明光传输损伤的物理机制及其对光纤通信系统的影响、实现高速大容量光传输系统是光通信领域的重要科学问题。该项目在国家自然科学基金、“863计划”等资助下,针对光纤传输物理损伤机制、电均衡技术和高速光传输系统实现关键技术进行了深入研究,首次实现掺铒光纤激光器双波长混沌产生和同步,发现混沌光通信速率受限于激光器结构及其非线性特性决定的混沌带宽;发现非线性相位噪声相关性物理机制;提出光纤非线性损伤自适应电均衡方案、基于正交基展开的相位噪声理论和抑制方法,以及基于正交频分复用和单载波技术的超大容量光纤传输关键技术方案,并创造多个高速光传输速率和容量纪录;还提出多通道线性啁啾管理和光频率均衡技术,实现了低成本高速光接入系统。

关键技术正在突破 实验验证稳步推进

  李淳飞, 男 ,1961年毕业于哈尔滨工业大学,现任哈尔滨工业大学现代光学研究所所长,教授。李淳飞教授是国家首届863计划信息领域专家委员会委员,中国光学学会理事,美国光学学会和光学工程学会会员。它的主要研究方向是非线性光学和光子技术,特别是广泛应用于光通信、光计算和光传感中的光开关器件,长期参加国际科研合作和学术交流,在国际学术界享有较高声誉。

该项目第一完成人张帆、第三完成人义理林教授、第四完成人杨川川均为区域光纤通信网与新型光通信系统国家重点实验室固定人员。此外,合作单位还包括烽火科技集团有限公司。

随着全球宽带业务的增长,大带宽已成为通信网络最基本要求,100G系统已开始规模商用,超100G WDM系统成为全球运营商、设备商新的研究热点。我国运营商的光传输网络带宽的增长势头在全球范围内保持领先地位。目前具备商用能力的C波段80×100Gbit/s 光WDM传输系统的总带宽接近10Tbit/s,有效频谱效率也已超过2bit/s/Hz。下一步发展目标一方面是继续提高传输容量,例如400Gbit/s、1Tbit/s,并实现超长距离传输,满足互联网容量增长对传输、路由等设备的大管道需求;另一方面是提高频谱效率,增加单光纤传输带宽,降低每比特成本。

  进入新世纪,李淳飞教授在哈尔滨工业大学开辟了光通信网络器件与系统研究的新方向,取得多项创新性研究成果。

信息来源:

多载波和超级波道技术

  内容简介

成为超100G关键

  现代的工业是以信息技术为先导,也是最大的产业。20世纪下半年,信息技术发展很快,在我们的生活和生产当中,起到一个关键作用。大家都知道互联网是很重要的,我们可以通过互联网来传递各种各样的信息,可以进行信息处理,甚至于在我们的生活当中也广泛应用。但是现在的电子互联网它的速度不够快,我们常常感到上网有困难。为了改变电子互联网系统速度慢、信息量少等缺点,科学家门研制出了光纤通信互联网系统。光纤通信具有传输速度快、传递信息量大和保密性强等优势。过去的电子互联网就相当于一个羊肠小道,而这个光纤互联网就像是一个宽带的信息的高速公路。

单波传输系统从10G的OOK调制方式加直接检测发展到当今100G系统的偏振复用QPSK调制加相干检测。今后的发展趋势则将是单波道100G系统向400G和1T的演进,并且由于相干检测的引入,对数字信号处理和超高速数模转换的要求变得越来越高。目前单波道400G系统的主流方案为在100G的基础上,将调制阶数升高为16-QAM,将频谱效率提升一倍,并且采用双载波,将两个光域的子载波并列排放,以此来实现400G的传输。但是当单波道速率提高到1Tb/s乃至更高时,由于电子器件的速率继续提高会带来实现难度和成本巨大的代价,很难再通过1~2个载波来承载这么高速的信号,这时新的多载波和超级波道技术成为实现单波道1T传输的关键。

  中国光通信的发展非常迅速,20世纪80年代上海首先铺设了一条1.8公里的数字光通信线路。20世纪80年代国家投资武汉邮电研究院,研制光纤器件。1995年到1998年,上海交大完成了九五项目,四个节点的全光城域网、实验网。20世纪90年代起,全国各地都普遍铺设和使用单路的光纤通信线路,现在是一直到农村,我们都可以看到光纤线路。2000年底中国网通公司建成了3400公里的波分复用的光纤通信网,2001年完成了863项目,中国高速示范网。2000年,国家自然科学基金资助了一个项目,中国高速互联研究实验网。目前,光纤通信系统已经进入到我国广大的城市和乡村,为人民生活和经济发展提供了便捷服务。哈尔滨工业大学教授李淳飞通过对光发射、光接受、光放大等技术的研究,向我们描述了利用互联网传递邮件、查找资料、收看电视、打电话的多功能前景。

业界主流的多载波技术有光正交频分复用技术以及Nyquist WDM技术。OFDM技术在无线通信领域已经得到广泛的应用,将数据通过大量彼此正交的子载波来承载,因此频谱上各个子载波可以互相重叠而不互相影响。大量的子载波一般通过电域的傅里叶变换/反变换来产生,光域产生子载波受到当前光集成水平的限制,较少被采用。由于O-OFDM技术具有频谱效率高、需要的DSP复杂度低、信道资源灵活分配等优点,近年来在光传输领域得到了越来越多的关注。O-OFDM技术的主要缺点是由于信号的峰均比较高,受到更多非线性的制约;由于相位噪声的补偿问题,对激光器线宽的要求较高,需要采用ECL类型的激光器;另外对于ADC/DAC的精度要求较高。

  全文

  今天我讲的题目是《光纤通信进展》。主要讲的内容,首先谈一谈光纤通信发展的历史,然后我们再介绍光纤通信一些关键技术,包括光纤及其特性,光纤通信系统,还有光纤通信器件。我偏重于光纤通信器件,最后我们给个结论。

  我们先谈光纤通信是怎么发展起来的。我们都知道,现代的工业是以信息技术为先导,也是最大的产业。20世纪下半年,信息技术发展很快,在我们的生活,我们的生产当中,起到一个关键作用。20世纪的信息技术,是有什么样的特点呢?它是以微电子学为基础,微电子学的发展,促进了信息技术的发展,它的关键技术是晶体管等电子器件。晶体管大家都知道是PN结形成的,有了晶体管以后,就有了开关,有了放大,有了调制各种各样的器件。把这些器件和这些元件集成在一起,就成为集成电路。我们电子计算机的芯片,就是集成电路组成的,集成电路做得越来越小,所以我们的计算机也就变得越来越小,而且速度越来越快。

  同时,电子通信也得到很大的发展,电子通信和电子计算机结合起来,就成了我们今天的电子互联网。大家都知道互联网是很重要的,我们可以通过互联网来传递各种各样的信息,可以进行信息处理,甚至于在我们的生活当中也广泛应用。但是现在的电子互联网它的速度不够快,我们常常感到上网有困难,所以要进一步发展通信网。到了21世纪,据我的理解,我的了解,光电子学将要有很大的发展。这是什么意思呢?就是把光子器件和电子器件放在一起,来组成一个光电子学的关键技术。这个技术呢,就是异质结结构和器件和光电子集成。异质结结构,就是PN结,大家都知道,就是N形P形半导体中间形成一个PN结。现在我们光电子器件,是采取不同的材料,做P形的或者N形的,所以叫异质结的结构器件。有了这个器件,我们就可以设计产生激光二极管,这就是作为光纤通信的光源。另外我们可以做砷化镓的快速开关器件,这样我们就可以做高速的计算机。将来的计算机我估计也会把光纤的技术放进去,就是光电混合的,我们就要做光子和电子器件的混合集成,所以叫光电子集成。有了这两个关键技术,我们就可以发展光纤通信和高速计算机,然后我们可以实现高速的光纤互联网,宽带的,就像是高速公路一样,有很多条线路,同时来可以开车,可以不受到阻拦。过去呢,电子互联网就相当于一个羊肠小道,而这个光纤互联网就像是一个信息的高速公路。

  由于在现代信息技术当中,一些科学家们,做了很大的贡献,所以2000年诺贝尔奖物理学奖就奖给了现代光学技术的奠基者。把这个奖分成两半,一部分就授予发明半导体异质结构的两位专家,一个是俄罗斯约飞物理技术研究所的所长,Alferov;另外一位是美国加州大学UCSB分校的教授叫Kroemer,这是一部分,另外一半是奖给了集成电路的发明者,也是美国德克萨斯仪器公司的发明家,Kilby,这说明我们物理学界也非常重视现代技术的现代信息技术的发展。

  现在我们看一看,国际光纤通信发展的里程碑,大概前后只有四十多年。1955年,英国科学家卡帕尼,发明了玻璃光导纤维。1960年华人高锟等人,他们首先提出了用低吸收的光纤做光通信,高锟我们称他为光纤之父,他是原来香港中文大学的校长。在1970年,光纤通信有很大的发展,建立一个很强的基础,一方面是传导光波的光纤,这个美国的柯林公司已经做出了每公里20分贝的低损耗。另外一方面,光源是很重要的,贝尔实验室研制成功室稳连续运转的半导体激光器,这两个一结合,光纤通信就有了基础。所以七 八年以后,美国在芝加哥市首先开辟了第一条光纤通信线路,再过10年左右,1.55微米波长的光纤损耗率它低到0.2个分贝每公里,这就是有两个数量级的降低它的损耗,这样就可以传输很远。在同年,这是英国的南安普敦大学,他们发明了掺铒光纤放大器。这样的话,就不需要把光信号变成电进行放大,然后再输送出去,再转成光信号,不用光 电 光的转换,而是直接用光来放大。

本文由澳门金莎娱乐网站-官方首页发布于信息科技,转载请注明出处:光导纤维通讯传输损害物理机制商量及高速光传

关键词: